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Abstract
Background: Malignant pleural mesothelioma (MPM) is a 
highly lethal disease comprising a heterogeneous group of 
tumors with challenging to predict biological behavior. The 
diagnosis is complex, and the histologic classification in-
cludes 2 major subtypes of MPM: epithelioid (ˇ60% of cases) 
and sarcomatous (ˇ20%). Its identification depends upon 
pathological investigation supported by clinical and radio-
logical evidence and more recently ancillary molecular test-
ing. Treatment options are currently limited, with no known 
targeted therapies available. Objectives: To elucidate the 
mutation profile of driver tumor suppressor and oncogenic 

genes in a cohort of Brazilian patients. Methods: We se-
quenced 16 driver genes in a series of 43 Brazilian malignant 
mesothelioma (MM) patients from 3 distinct Brazilian cen-
ters. Genomic DNA was extracted from formalin-fixed paraf-
fin-embedded tumor tissue blocks, and the TERT promoter 
region was amplified by PCR followed by direct capillary se-
quencing. The Illumina TruSight Tumor 15 was used to eval-
uate 250 amplicons from 15 genes associated with solid tu-
mors (AKT1, GNA11, NRAS, BRAF, GNAQ, PDGFRA, EGFR, KIT, 
PIK3CA, ERBB2, KRAS, RET, FOXL2, MET, and TP53). Library 
preparation with the TruSight Tumor 15 was performed be-
fore sequencing at the MiSeq platform. Data analysis was 
performed using Sophia DDM software. Results: Out of 43 
MPM patients, 38 (88.4%) were epithelioid subtype and 5 
(11.6%) were sarcomatoid histotype. Asbestos exposure was 
present in 15 (39.5%) patients with epithelioid MPM and 3 
(60%) patients with sarcomatoid MPM. We found a TERT pro-
moter mutation in 11.6% of MM, and the c.-146C>T mutation 
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was the most common event. The next-generation sequenc-
ing was successful in 33 cases. A total of 18 samples showed 
at least 1 pathogenic, with a median of 1.8 variants, ranging 
from 1 to 6. The most mutated genes were TP53 and ERBB2 
with 7 variants each, followed by NRAS BRAF, PI3KCA, EGFR 
and PDGFRA with 2 variants each. KIT, AKT1, and FOXL2 genes 
exhibited 1 variant each. Interestingly, 2 variants observed in 
the PDGFRA gene are classic imatinib-sensitive therapy. Con-
clusions: We concluded that Brazilian MPM harbor mutation 
in classic tumor suppressor and oncogenic genes, which 
might help in the guidance of personalized treatment of 
MPM. © 2020 S. Karger AG, Basel

Introduction

Malignant pleural mesothelioma (MPM) is an aggres-
sive tumor arising from mesothelial cells forming a lubri-
cated and nonadhesive surface that cover and protect the 
lungs, abdomen, and heart [1–3]. MPM is a rare and a 
universally lethal cancer [4] in which the most common 
form arises in the pleura of the lung (80% of cases) [1, 2], 
and much more rarely in the peritoneum and tunica vag-
inalis [2]. Following the World Health Organization 
(WHO), the number of new MPM cases worldwide in 
2018 was 30,443, and the number of deaths was 25,576 
[5]. In Brazil, there is an impressive lack of studies and an 
underreporting of MPM cases, making it difficult to make 
public health decisions [6]. Pedra et al. [7] studied MPM 
mortality in Brazil, from 1980 to 2003, and found the 
death frequency increased from an average of 68.4 per 
year in the 1980s to 110 per year in the following decade, 
and 157 per year in 2000–2003. 

MPM is a direct causal relationship between exposure 
to an environmental carcinogen, such as asbestos, and 
the transformation of mesothelial cells and the develop-
ment of the tumor [2]. Asbestos is a generic name refer-
ring to a family of 6 mineral fibers, with high tensile 
strength and resistance to thermal and chemical degra-
dation, very popular in the industry [1, 8]. Although the 
use of asbestos has already been prohibited in 54 coun-
tries worldwide, its extraction and use are still ongoing 
in many developing countries as Russia, China, Kazakh-
stan, and Brazil [2, 9]. One of the peculiarities of MPM is 
the long-term latency period between asbestos exposure 
and tumor development, ranging from about 25 to 40 
years [10, 11].

Histologically, MPM are classified into 2 major types: 
epithelioid mesotheliomas, which constitute about 60% 

of mesotheliomas and have the most extended survival 
(12–27 months) and sarcomatoid mesotheliomas, which 
constitute around 20% of mesotheliomas and are charac-
terized by their spindle cell morphology and have the 
worst survival (7–18 months) [2, 12, 13].

For the last 15 years, first-line chemotherapy com-
bines pemetrexed and cisplatin or pemetrexed and car-
boplatin [14]. The benefits are usually modest at best, 
and prognosis remains poor: the median survival is < 1 
year from the time of diagnosis [10, 11]. Recently, the 
major advance in MPM treatment is the identification of 
bevacizumab in addition to pemetrexed and cisplatin 
chemotherapy, probably by modifying the tumor micro-
vasculature [2, 15]. 

Genetic and epigenetic alterations are observed in me-
sothelial cells. The most frequently altered tumor sup-
pressor genes are BRCA-associated protein 1 (BAP-1), 
neurofibromatosis type 2 (NF-2), cyclin-dependent ki-
nase inhibitor 2A (CDKN2A), large tumor suppressor ki-
nase 2 (LATS2), and SET domain containing 2 (SETD2) 
[1, 16]. These alterations drive cell proliferation, resis-
tance to apoptosis, and local immunosuppression, pro-
viding the rationale for some new targeted therapies now-
adays [17, 18]. Approximately 65% of mesotheliomas 
harbor inactivation of the tumor suppressor BAP1 and, 
although rare, germline mutation in BAP1 confers a high-
er risk of mesothelioma development [19, 20]. While sev-
eral prognostic factors have been proposed, only a few 
have been independently validated.

Recently, genome-wide somatic mutations of MPM 
were profiled using next-generation sequencing (NGS) 
methods, identifying genomic subtypes harboring muta-
tions in TP53, TERT, and other driver genes [16, 21]. Nev-
ertheless, useful predictive biomarkers for therapy are yet 
to be found, increasing the need to elucidate and deepen 
the complexities of MPM biology and heterogeneity. In 
the present study, we evaluated the mutation profile of 
driver genes that are frequently mutated in solid tumors, 
in order to correlate the mutation status with malignant 
mesothelioma (MM) patients’ clinical-pathological fea-
tures and to identify potential clinically actionable genet-
ic alterations in Brazilian MM.

Materials and Methods

Patients
Information on 43 patients diagnosed with MPM between 

2008 and 2018 at Barretos Cancer Hospital (Barretos, SP, Brazil), 
Cancer Institute of São Paulo (ICESP; Sao Paulo, SP, Brazil) and 
from the files of a large reference pathology laboratory located in 
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São Paulo (SP, Brazil) was collected through the Thoracic Surgery 
mesothelioma database and the Department of Pathology data 
file. 

Pathologic diagnosis was based on standard histologic, histo-
chemical, and immunohistochemical criteria [22]. As a positive 
marker of immunohistochemistry for MPM, we used calretinin, 
WT-1, cytokeratin 5/6, and D2–40. As negative markers for MPM, 
we used MOC31, BerEP4, and thyroid transcription factor-1. In 
cases whare positive mesothelial markers were not yet available, 
negative markers were used for making the diagnosis of MPM. A 
review of pathological reports and confirmation by 2 experienced 
pathologists yielded 38 epithelioid and 5 sarcomatoid MPM. Vari-
ables recorded in the database included age, gender, and histolog-
ic types (Table 1). 

Histologic Evaluation
Two pathologists reviewed all available hematoxylin and eosin-

stained slides of MPM, which included a median of 9 slides per 
case. Histologic classification for epithelioid and sarcomatoid 
MPM was done according to the 2015 WHO classification [3] 
(Fig. 1). 

DNA Isolation
Representative formalin-fixed paraffin-embedded tumor sam-

ples from 43 MPM patients were retrieved from the Pathology De-
partment of Barretos Cancer Hospital. DNA from formalin-fixed 
paraffin-embedded tissues was retrieved from 10-μm cuts, after 
careful macrodissection of the tumor area using a sterile needle 
and ensuring the presence of > 50% of neoplastic cells. DNA was 
isolated using the QIAamp DNA Micro Kit (Qiagen, Germany) 
according to the manufacturer’s instructions and as previously de-
scribed by our group [23, 24]. The quality and concentration of 
DNA were measured in a NanoDrop 2000 UV-Vis Spectropho-
tometer (Thermo Fisher Scientific, USA) or Qubit Fluorometric 
Quantitation (Thermo Fisher Scientific) followed by storage at 
–20  ° C until molecular analysis.

TERT Sanger Sequencing 
A fragment of the TERT promoter region was amplified in all 

43 samples by PCR using the primers 5Ԣ-AGTGGATTCGC-
GGGCACAGA-3Ԣ and 5Ԣ-CAGCGCTGCCTGAAACTC-3Ԣ, re-
sulting in a PCR product of 235 bp, which contained the sites of 
the c.-124C>T and c.-146C>T mutations as previously described 
[25–27]. PCR was performed with an initial denaturation at 95  ° C 
for 15 min, followed by 40 cycles of denaturation at 95  ° C for 30 s, 
annealing at 64  ° C for 90 s, elongation at 72  ° C for 30 s, and final 
elongation at 72   ° C for 7 min. The quality of PCR products was 
confirmed by gel electrophoresis. The sequencing of the PCR 
product was performed using the BigDye Terminator version 3.1 
Cycle Sequencing Kit (Applied Biosystems, USA) and ABI PRISM 
3500×L Genetic Analyzer (Applied Biosystems). 

The sequencing reaction was performed in the forward direc-
tion. An independent PCR amplification/sequencing, in the for-
ward direction, was performed in positive samples or samples that 
were inconclusive.

Targeted NGS 
NGS-based mutation analysis was performed using the Illu-

mina TruSight Tumor 15 on the MiSeq instrument according to 
the manufacturer’s instructions (Illumina, USA). It provides a mu-
tation profile of 15 therapy driver genes AKT1, GNA11, NRAS, 
BRAF, GNAQ, PDGFRA, EGFR, KIT, PIK3CA, ERBB2, KRAS, 
RET, FOXL2, MET, and TP53. The read alignment and variant 
calling were performed with BaseSpace BWA Enrichment version 
2.1 (Illumina) and Sophia DDM® software version 4.2 (Sophia Ge-
netics SA, Switzerland). Several steps were used to filter variants 

a b

c d

Table 1. Clinical characteristics of patients with malignant meso-
thelioma

Characteristic Epithelioid 
(n = 38)

Sarcomatoid 
(n = 5)

p value

Median age, years 60 56 0.33
Sex

Male 26 (68.4) 1 (20) 0.45
Female 12 (31.6) 4 (80)

Asbestos exposure
No 23 (60.5) 2 (40) 0.51
Yes 15 (39.5) 3 (60)

Topography
Pleural 38 (100) 5 (100)
TERT status

Mutation
Wild type

5 (15.2)
28 (84.8)

0
5 (100) 0.94

Data are presented as n (%) unless otherwise indicated.

Fig. 1. Hematoxylin and eosin-stained slides of MPM, with differ-
ent histologic classification: epithelioid (a), sarcomatoid (b), bi-
phasic with the epithelioid component (c), and biphasic showing 
a sarcomatoid component (d).
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identified in the screening. First, intronic variants and synony-
mous single nucleotide variants (SNVs) were excluded. Subse-
quently, polymorphisms were excluded using the frequency of 1% 
in both databases – 1000 Genomes Project and GO Exome Se-
quencing Project (ESP5400). Finally, this set was further filtered by 
excluding all variants showing a poor quality (read depth < 500×), 
low variant allele frequency (variant frequency analysis < 10%), 
and without clinical significance available in Sophia DDM® soft-
ware version 4.2 (Sophia Genetics SA). In addition, 10 bp were 
considered in the initial and final portion of introns for variant 
analyses at the splice site of each exon.

Results

Cohort Description
The clinical characteristics of the patients in our MPM 

cohort are summarized in Table 1 by histologic type. Out 
of 43 MPM patients, 38 (88.4%) were epithelioid subtype 

and 5 (11.6%) were sarcomatoid histotype. A similar dis-
tribution of age and sex was found between the histolog-
ic types. Asbestos exposure was present in 15 (39.5%) pa-
tients with epithelioid MPM and 3 (60%) patients with 
sarcomatoid MPM. Pleural topography was found in 38 
(100%) patients with epithelioid histology and 5 (100%) 
patients with sarcomatoid histology. 

Mutation Profile 
We found a TERT promoter mutation in 11.6% (5/43) 

of the MPM (Table 2; Fig. 2). The c.-146C>T mutation 
was present in 3 cases and the c.-124C>T mutation in 2 
cases. The 2 mutations occur in a mutually exclusive 
manner. All TERT mutated cases were histologically clas-
sified as epithelioid (Table 2). 

In NGS-based mutation analysis, only 33 samples were 
successfully sequenced due to DNA quality issues. A total 
of 18 samples showed at least 1 variant (54.5%), and the 
number of variants per sample ranged from 1 to 6, with a 
median of 1.8 variants (Table 3). The top altered genes 
were as follows: TP53 with 7 different variants in 7 cases 
(7/33 cases representing 21.2%), ERBB2 with 7 different 
variants in 6 cases (6/33; 18.2%), BRAF and PDGFRA with 
2 variants in 2 cases each (2/33; 6%), NRAS and EGFR with 
2 variants in 1 case each (1/33; 3%), and KIT, AKT1, PIK-
3CA, and FOXL2 with 1 variant each (1/33; 3%; Table 3).

Fourteen samples showed 1 variant (77.7%), 2 samples 
showed 2 variants (11.1%), one sample showed 3 variants 
(5.6%), and 1 sample showed 6 variants (5.6%; Table 3). 
In total, 27 different variants were identified: 23 were mis-
sense, 2 nonsense, and 2 frameshift (Table 3). In addition, 
24 were SNVs and 3 INDELs. In summary, 10 of the 27 

a

b

Table 2. TERT status and mutations according to histotype

TERTp status Histotype Mutated genes

c.-146 C>T Epithelioid No

c.-146 C>T Epithelioid Undetermined

c.-146 C>T Epithelioid ERBB2 exon 29 (Pro1105Ser)
ERBB2 exon 21 (Gly674Arg)
PI3KCA exon 21 (*Arg1023Gln)
TP53 exon 6 p. (Gly187Val)

c.-124 C>T Epithelioid TP53 exon 6 p. (Leu194Arg)

c.-124 C>T Epithelioid TP53 exon 8 p. (Glu294*)

Fig. 2. Electropherograms showing se-
quence of TERT promoter region with 2 
hot-spot mutations c.-124C>T and c.-
146C>T. a Heterozygous c.-124C>T TERT 
promoter mutation (arrow). b Heterozy-
gous c.-146C>T TERT promoter mutation 
(arrow).
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variants are known COSMICs (catalog of somatic muta-
tions in cancer), and 21 were reported as potentially 
pathogenic and 6 as most likely pathogenic in accordance 
with Sophia DDM reports (Table 3). 

To assess the therapeutic implications of molecular 
events in our set of variants, we used Database of Evi-
dence for Precision Oncology (DEPO; http://depo-
dinglab.ddns.net) that focuses on specific mutations 
(STAR Methods) and casts therapeutic projections based 
on FDA-approved therapies, clinical trials, and published 
clinical evidence [28]. Of note, 2 variants in the PDGFRA 
gene (p.[Arg817Cys] in exon 18 and p.[Leu660Phe] in 
exon 14) found in MM were already described as a target 
of imatinib and an FDA-approved targeted therapy for 
GIST patients.

Discussion/Conclusion

MPM is a lethal cancer of the lung caused by human 
exposure to asbestos fibers [29]. Asbestos fibers may be 
inhaled by workers who deal directly with the fibers, by 
family members who are unintentionally exposed through 
workers’ clothing, and by inhabitants of areas close to 
work sites where asbestos is processed or used [7]. In the 
year 2000, only 6 countries were responsible for almost all 
global asbestos production. Brazil is among these coun-
tries and produces approximately 250,000 tons/year, 
which ranks Brazil as the third greatest worldwide asbes-
tos consumer [7]. 

MPM is highly refractory to conventional therapies, 
and the median survival of patients is 9–12 months after 
diagnosis, even with a combination of aggressive surgical 
intervention and multimodality strategies [1, 29]. Recent-
ly, MPM studies have identified genetic subtypes with a 
distinct profile of alterations in driver genes, increasing 
the need for understanding MPM biology for the success-
ful development of personalized therapeutic modalities. 

We analyzed the mutational profile in 16 driver genes 
by NGS or Sanger sequencing in 43 Brazilian MPM. Using 
Sanger sequencing, we analyzed TERT promoter muta-
tions and found 11.6% mutated tumors. The c.-146C>T 
mutation was present in 7% and c.-124C>T in 4.6% of 
MPM. The 2 mutations occur in a mutually exclusive man-
ner, and all TERT-mutated samples were histologically 
classified as epithelioid mesothelioma. In 2014, Tallet et al. 
[21] analyzed 132 MM and found 15.2% of TERT mutation 
(20/132), all in the c.-124 C>T region, and with a higher 
frequency in sarcomatoid histologic subtype. They screened 
TERT promoter mutations by Sanger sequencing and in-

cluded 61 samples derived from MM culture cells and 71 
from tumor samples. Considering only the tumor samples, 
they found a mutation frequency similar to ours – 11.3% of 
the tumors had TERT promoter mutation. 

In NGS-based mutation analysis, we found a total of 
18 samples that showed at least 1 variant (representing 
54.5% in a total of 33 cases studied). The range of variants 
was from 1 to 6 per sample, with a median of 1.8 variants. 
In total, 27 different variants were identified, and TP53 
and ERBB2 were the most altered genes with 7 different 
variants each. 

Mutations in TP53 have been reported in MPM. Previ-
ous studies reported a range of TP53 mutations from 5.7 
to 19% in MPM cases [16, 29–34]. Here, we found 21.2% 
of cases with TP53 mutation. In 2016, Bueno et al. [29] 
published a large series with 202 MPM cases and found 
TP53 mutations in 8% of cases. Recently, a TCGA cohort 
comprising 74 tumors revealed 13.5% of TP53 mutations 
[16]. Hmeljak et al. [16] showed that TP53 is one of the 
MPM driver genes, together with BAP1, SETD2, and NF2, 
and is associated with aggressive behavior [16, 28]. They 
showed 13 TP53 mutations, mainly SNV type, missense 
type, and in exons 5–8 (all these alterations were found in 
10/13 mutated cases), as found by us, but in different nu-
cleotides [16]. Interestingly, they suggested that TP53 mu-
tations occur early and presumably permit the catastroph-
ic loss of chromosomes [16]. Here, we confirmed the im-
pact of TP53 mutations in many MPM cases (about 21%), 
but we did not evaluate BAP1, SETD2, and NF2 genes.

Additionally, by targeted NGS, we found 18.2% of cas-
es with at least 1 variant in the ERBB2 gene. Despite 
ERBB2 mutations occurring in multiple cancers [28], this 
is the first report in MPM. ERBB2 is a member of the hu-
man epidermal growth factor receptor (HER) family of 
receptor tyrosine kinases, of which overexpression results 
in the oncogenic transformation of cells [35]. The ERBB2 
gene is amplified in 15–20% of breast cancers and is as-
sociated with aggressive disease behavior [35]. It is known 
that some mutations in the ERBB2 transmembrane do-
main, mainly in the 656–660 region in protein sequence, 
promote significant cell survival by increasing the stabil-
ity of the receptor and keeping it in its activated state [28]. 
Interestingly, here, we found 2 ERBB2 mutations specifi-
cally localized in 656 and 660 residues. 

Other variants found in MPM cases were PDGFRA, 
BRAF, NRAS, and EGFR with 2 variants each, and KIT, 
AKT1, PIK3CA, and FOXL2 with one variant each. 
Searching for mutations that are targeted by drugs that 
are now available, we used the DEPO platform and found 
2 variants in PDGFRA (p.[Arg817Cys] in exon 18 and 
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p.[Leu660Phe] in exon 14), targeted by imatinib that 
could improve outcomes for patients with mesothelioma. 
In accordance, Bailey et al. [28] also found that very few 
MM mutations are druggable (using DEPO, they found 
1%). In addition, they found in about 50% of cases that 
the nucleotide changes occur in C>T. Here, we found that 
almost 30% of nucleotide changes occurred in C>T.

One limitation of our study is that we did not have the 
opportunity to correlate the asbestos exposure history 
from MPM cases with the clinical pathological and mu-
tational profile.

In conclusion, we showed that MPM are highly com-
plex and heterogeneous neoplasms. By Sanger sequenc-
ing and targeted NGS, we described a somatic mutation 
profile composed of the top altered genes TP53, ERBB2, 
and TERT. Interestingly, clinically actionable alterations 
were found in 2 cases, suggesting that these patients could 
benefit from this therapeutic modality. 
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