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Abstract

Background: MicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional gene expression
regulation and have been described as key regulators of carcinogenesis. Aberrant miRNA expression has been
frequently reported in sporadic breast cancers, but few studies have focused on profiling hereditary breast cancers.
In this study, we aimed to identify specific miRNA signatures in hereditary breast tumors and to compare with
sporadic breast cancer and normal breast tissues.

Methods: Global miRNA expression profiling using NanoString technology was performed on 43 hereditary breast
tumors (15 BRCA1, 14 BRCA2, and 14 BRCAX), 23 sporadic breast tumors and 8 normal breast tissues. These normal
breast tissues derived from BRCA1- and BRCA2- mutation carriers (n = 5) and non-mutation carriers (n = 3).
Subsequently, we performed receiver operating characteristic (ROC) curve analyses to evaluate the diagnostic
performance of differentially expressed miRNAs. Putative target genes of each miRNAs considered as potential
biomarkers were identified using miRDIP platform and used for pathway enrichment analysis.

Results: miRNA expression analyses identified several profiles that were specific to hereditary breast cancers. A total
of 25 miRNAs were found to be differentially expressed (fold change: > 2.0 and p < 0.05) and considered as
potential biomarkers (area under the curve > 0.75) in hereditary breast tumors compared to normal breast tissues,
with an expressive upregulation among BRCAX cases. Furthermore, bioinformatic analysis revealed that these
miRNAs shared target genes involved in ErbB, FoxO, and PI3K-Akt signaling pathways.

Conclusions: Our results showed that miRNA expression profiling can differentiate hereditary from sporadic breast
tumors and normal breast tissues. These miRNAs were remarkably deregulated in BRCAX hereditary breast cancers.
Therefore, miRNA signatures can be used as potential novel diagnostic biomarkers for the prediction of BRCA1/2-
germline mutations and may be useful for future clinical management.
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Background
Breast cancer is the most commonly diagnosed cancer
among women worldwide after non-melanoma skin can-
cer and the leading cause of cancer-related deaths in de-
veloping countries [1, 2]. Although most breast tumors
arise due to acquired mutations caused mainly by life-
style and environmental factors, approximately 5 to 10%
are attributable to inherited pathogenic variants in
cancer-predisposing genes [3, 4]. Indeed, breast tumors
have been reported within the tumor spectrum of many
hereditary cancer syndromes [5]. However, the most
common entity linked to inherited breast cancer is the
hereditary breast and ovarian cancer (HBOC) predispos-
ition syndrome, which is a highly penetrant, autosomal
dominant condition primarily caused by germline patho-
genic variants in breast cancer type 1 and 2 susceptibility
genes (BRCA1 and BRCA2) [3–6]. Although 50% of sug-
gested HBOC cases are of unknown genetic origin (also
termed ‘BRCAX’), pathogenic variants in BRCA1/2 are
more frequent (9–29%) than pathogenic variants in
other high-penetrance genes (4–11%) [7, 8].
BRCA1 and BRCA2 are well-known tumor suppressor

genes (TSGs) involved in many cellular processes implicated
in the maintenance of genome integrity. Therefore, patho-
genic variants in BRCA1 or BRCA2 can disrupt important
biological functions, allowing the accumulation of genetic al-
terations and consequently increasing cancer susceptibility
[9, 10]. Indeed, female individuals who carry a BRCA1/2-
germline variant have a lifetime risk of developing breast
cancer of up to 87% [11]. This may present a high histologic
grade and, in particular for BRCA1-mutation carriers, a high
mitotic index and triple-negative phenotype [12]. The iden-
tification of BRCA1/2-pathogenic variants is imperative and
could directly impact on prevention, early cancer diagnosis,
and clinical management of patients.
Genetic counseling and testing for BRCA1/2-germline

mutations are currently available; however, screening of
these mutations is still expensive and time-consuming be-
cause both genes do not present mutational hotspot re-
gions; thus, such genetic alterations can occur throughout
all the coding sequences [13]. Accordingly, many predic-
tion models have been developed and are widely used to
estimate the pre-test likelihood of identifying individuals
and families at high risk for carrying these mutations [14–
18]. Some studies that have evaluated the performance of
the breast cancer genetic risk models reported low specifi-
city rates for predicting BRCA1/2-germline mutations
[19–22]. Therefore, there is a need to define additional pa-
rameters that could complement the current criteria
adopted by the available prediction models to provide an
accurate and effective selection of patients that should
proceed to BRCA1/2 genetic testing.
MicroRNA (miRNA) are small non-coding RNAs that

could promote tumor development and/or progression

by disturbing oncogenes and tumor suppression expres-
sion patterns [23–25]. Several studies have found dis-
tinctive miRNA expression profiles in a wide range of
human tumors, suggesting that miRNA profiling could
be used for diagnostic purposes [26–29]. An advantage
of miRNAs is that they are more resistant to degradation
caused by the formalin-fixed paraffin-embedded (FFPE)
tissue processing [30]. However, little is known about
miRNA expression in hereditary breast cancers (HBC)
[31–33]. Moreover, it remains unclear whether miRNA
profiling could be useful to distinguish BRCA1/2-muta-
tion carriers from non-carriers.
In order to identify miRNA signatures that could serve

as potential biomarkers to discriminate HBC, we evaluate
the expression profiles of miRNAs in HBC tumors, spor-
adic breast cancer (SBC), and normal breast tissues (NBT)
from carriers and non-carriers of BRCA1 or BRCA2
pathogenic germline mutations using NanoString technol-
ogy. We demonstrate that miRNA expression profiles can
discriminate HBC from SBC and BRCAX breast cancer.
Therefore, these miRNAs could be useful as potential
diagnostic biomarkers to improve the performance of the
BRCA1/2-mutation prediction models and impact on the
clinical management of breast cancer patients who may
benefit from platinum-based chemotherapy and PARP in-
hibitors, such as olaparib [34].

Methods
Study population and clinicopathological features
A retrospective cohort study was performed in a total of
74 unrelated female patients admitted at Barretos Can-
cer Hospital between 2003 and 2017, including 66 pa-
tients with primary invasive breast cancer and 8 patients
attended for reasons other than personal history of ma-
lignancy. Our cohort comprised 29 HBC patients har-
boring a confirmed BRCA1 (n = 15) or BRCA2 (n = 14)
pathogenic germline mutation (a subset of cases derived
from a larger population [35]); 14 HBC patients who
were referred for BRCA1, BRCA2, TP53 and PTEN gen-
etic testing for meeting clinical criteria for HBOC, but
no pathogenic variants were found – therefore consid-
ered as BRCAX; 23 SBC patients with no family history
of breast and/or ovarian cancer; five healthy individuals
harboring a BRCA1 (n = 3) or BRCA2 (n = 2) pathogenic
germline mutation who had undergone prophylactic
mastectomies; and three healthy patients with no family
history of breast and/or ovarian cancer.
All patients belonging to high-risk HBOC families were

referred by the Department of Oncogenetics of Barretos
Cancer Hospital for genetic testing after fulfilling the clin-
ical criteria defined by the National Comprehensive Can-
cer Network for a personal and/or family history of
HBOC. Healthy BRCA1/2-mutation carriers were referred
after a pathogenic germline mutation was identified in
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their families and were invited to undergo a mutation-
specific predictive genetic test. All information regarding
genetic counseling, genetic testing, and the management
of the families at risk for hereditary cancer in our institu-
tion have been described in detail elsewhere [36].

Pathological evaluation
All clinical and pathological data were collected from
medical records. Histologic tumor grade was assessed by
the modified Scarff-Bloom-Richardson grading system.
Tumor staging was performed according to the seventh
edition of the American Joint Committee on Cancer
TNM system. Breast cancers were also classified into
three intrinsic molecular subtypes (luminal, human epi-
dermal growth factor receptor 2 (HER2)+, and triple-
negative) based on the combined evaluation of estrogen
receptor (ER), progesterone receptor (PR), and HER2 ex-
pression status according to the 13th St Gallen Inter-
national Expert Consensus [37]. Evaluation of ER, PR,
and HER2 status was done using FFPE sections as part
of routine practice at the Pathology Department for
breast cancer clinical assessment defined according to
current guidelines [38–40].

Sample collection and RNA isolation
FFPE breast tissue samples were obtained from the ar-
chives at the Department of Pathology of the Barretos
Cancer Hospital. FFPE samples underwent total RNA iso-
lation using the QIASymphony SP automated system
based on magnetic-bead technology (QIAGEN, Hilden,
Germany) according to the manufacturer’s protocol (RNA
130 FFPE). Quantification and RNA quality assessment
were performed using a Nanodrop 2000 spectrophotom-
eter (NanoDrop Products, Wilmington, DE, USA).

NanoString nCounter miRNA assay
miRNA expression profiling was performed using the
nCounter Human v3 miRNA Expression Assay Kit
(NanoString Technologies, Seattle, WA, USA), according
to the manufacturer’s protocol. Briefly, 100 ng of total
RNA from each sample underwent sample preparation
involving multiplexed annealing of specific tags onto the
3′ end of each mature miRNA, followed by a ligation re-
action and an enzymatic purification to remove non-
ligated tags. Next, miRNAs were hybridized with probe
pairs which comprised biotin-labeled capture probes and
fluorescent color-barcoded reporter probes for 21 h at
65 °C. For sample preparation and hybridization steps, a
Veriti 96-Well Thermal Cycler (Applied Biosystems,
Foster City, CA, USA) was used to ensure the
temperature control required for the enzymatic reac-
tions. Unhybridized probes were washed away using
magnetic bead-based purification on the nCounter Prep
Station (NanoString Technologies, Seattle, WA, USA).

Purified target-probe complexes were subsequently
eluted from the beads and immobilized on cartridges
with streptavidin-covered surfaces. Finally, the cartridges
were transferred into the nCounter Digital Analyzer
(NanoString Technologies, Seattle, WA, USA) for data
collection consisting of digital imaging and direct quan-
tification of the individual fluorescent barcodes.

NanoString data analysis
NanoString raw data were submitted to R version 3.6.1 (R
Foundation, Vienna, Austria) and analyzed using the
NanoStringNorm R package (version 1.1.21) [41]. Briefly,
the following normalization steps were applied after
probe-level background correction by code-count
normalization using geometric mean parameter and sam-
ple content was normalized using the top 10 low Coeffi-
cient Vallue (CV) probes’ values. Normalized data were
log2-based transformed and subsequently used as input
for the differential expression analyses. The miRNAs dif-
ferentially expressed were further filtered according to the
presence in normal vs. sporadic group comparisons.

Differential expression analysis
Statistical analysis of NanoString miRNA differential ex-
pression in R was performed using the Linear Models
for Microarray Data (limma) package from Bioconduc-
tor. Limma has incorporated the most cutting-edge stat-
istical analysis methods, providing functions for
differential expression by empirical Bayes moderation of
the standard errors. In the present study, it was used the
moderated t-statistics for two-class comparisons and
moderated F-statistics por multiple comparisons. It was
considered as differentially expressed the miRNAs with
FDR-corrected p-value less than 0.05, and a two-fold
change difference in the expression levels between the
groups evaluated (NBT vs SBC; NBT vs HBC (BRCA1,
BRCA2 and BRCAX)).

The receiver operating characteristic curves (ROC) curve
analysis
ROC curve and the area under the curve (AUC-ROC)
were used as a filter for the differentially expressed miR-
NAs. The ROCR R package in R environment was used
to identify the true positive rate (sensitivity) as a func-
tion of the false positive rate (1-specificity) and the AUC
values. The coord function of the pROC package was
used to compute the best threshold values. In the
present study, miRNAs presenting an AUC-ROC ≤0.75
were excluded and Table 2 shows all the associated
values (sensitivity, specificity, AUC and cutoff values).

Hierarchical clustering
Expression profiles of selected miRNAs (differentially
expressed and filtered according to FDR-corrected p-
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values less than 0.05, fold-change greater than 2.0, ab-
sence in normal vs. sporadic group comparisons and
AUC-ROC greater than 0.75) were grouped in order to
evaluate their related expression patterns. It was used
the hierarchical clustering as the clustering methodology
with Euclidean distance to generate a hierarchical series
of nested clusters represented graphically as dendro-
grams. The ComplexHeatmap package of Bioconductor
was used for the generation of the related heatmaps. Red
color indicates upregulation and green, downregulation.

Target prediction and pathway enrichment analysis
We identified putative target genes of all differentially
expressed miRNAs through the microRNA Data Integra-
tion Portal (mirDIP) (http://ophid.utoronto.ca/mirDIP/), a
web-based computational database that integrates dozens
of bioinformatic tools for miRNA target prediction. We
restricted our search by considering predicted miRNA-
target interactions under very high confidence (top 1%).
From the obtained gene lists, we selected targets predicted
by at least three of the following five prediction tools:
DIANA, microrna.org, RNA22, RNAHybrid, and TargetS-
can. Considering the mechanism by which miRNAs
downregulate their target genes and may impact on car-
cinogenesis and tumor progression, we only focused on
genes previously described as TSGs or oncogenes in hu-
man cancers according to the Catalogue of Somatic Muta-
tions in Cancer (COSMIC) (https://cancer.sanger.ac.uk/
cosmic). The gene lists generated after applying all these
selection criteria were used as input data for further ana-
lysis in Cytoscape (version 3.6.1), software for integration,
visualization, and investigation of regulatory networks
(https://cytoscape.org/). To evaluate whether co-expressed
miRNAs could cooperatively affect breast cancer-related
biological processes and pathways, we performed Gene
Ontology (GO) enrichment analysis using the Reactome-
FIViz app (version 7.0.1), a Cytoscape plugin that provides
networks of functional regulatory interactions and curated
biological pathways derived from Reactome and other da-
tabases [42]. For this purpose, only breast neoplasm-
associated genes according to the Cancer Gene Index
Annotations provided by the National Cancer Institute
were selected for pathway enrichment and GO analyses
through the Load Cancer Index function available in Reac-
tomeFIViz. Only the process presenting at least three
genes and an FDR-corrected p-value ≤0.05 was
considered.

Statistical analysis
Patient data were presented as frequencies and percent-
ages for qualitative variables and the chi-square test or
Fisher’s exact test were used to compare frequencies
using the SPSS Statistics for Windows, version 20.0
(IBM, Armonk, NY, USA).

Results
MiRNA expression profiling was performed on a total of
74 FFPE samples, which comprised 43 HBC (15 BRCA1;
14 BRCA2; 14 BRCAX), 23 SBC and 8 NBT from 3
BRCA1-mutation carriers, 2 BRCA2-mutation carriers
and 3 non-carriers. Main demographics and clinicopath-
ological characteristics of the population are showed in
Table 1.

miRNA signatures of sporadic breast tumors
In order to establish miRNA expression signatures spe-
cifically associated with HBC, we firstly investigated
which miRNAs were significantly altered in SBC samples
compared with NBT – which could allow us to identify
whether any deregulated miRNAs are shared between
the SBC and HBC groups later. We found a total of 49
miRNAs significantly upregulated (fold change values:
≥2.0; p value: < 0.05) in sporadic breast tumors as com-
pared to NBT groups, yet no downregulated miRNAs
were found (Fig. 1). This first analysis allowed us to
identify whether any miRNAs are shared between the
SBC and HBC groups.

miRNA expression profiling of hereditary breast cancer
and normal breast tissues
In order to explore whether miRNA expression profiling
could also discriminate BRCA1, BRCA2, and BRCAX
breast tumors, we performed a multiple comparison to
identify a miRNA signature among HBC. We found a
total of 73 differentially expressed miRNAs, which com-
prised 70 upregulated and 3 downregulated miRNAs.
After a supervised hierarchical clustering analysis, we
confirmed that hereditary breast tumors mainly exhib-
ited an upregulated miRNA expression profile as com-
pared to NBT (Fig. 2). We also observed that most
BRCA2 breast tumors had expression patterns similar to
BRCAX, especially in the upregulated miRNAs cluster,
whereas most BRCAX breast tumors exhibited a specific
expression pattern in the downregulated miRNAs clus-
ter. Interestingly, we found that some BRCA1/2-mutated
NBT samples did not present homogenous expression
among the NBT groups for specific miRNAs.
Finally, we verified that 8 miRNAs significantly

expressed in HBC were commonly deregulated in SBC
as compared to NBT (hsa-miR-627-3p, hsa-miR-99b-5p,
hsa-miR-539-5p, hsa-miR-24-3p, hsa-miR-331-3p, hsa-
miR-663a, hsa-miR-362-3p and hsa-miR-145-5p). There-
fore, those miRNAs were excluded from the subsequent
analysis.

miRNAs as biomarkers for hereditary breast tumors
Next, we aimed to identify miRNAs that could be poten-
tial diagnostic biomarkers. We identified 25 upregulated
miRNAs as potential biomarkers using receiver operating
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characteristic (ROC) curve analysis. Our results showed
higher accuracy in distinguishing HBC from NBT (area
under the curve [AUC] > 0.75) in all groups (Table 2). We
also observed that these miRNAs achieved slightly higher
AUC values in BRCAX breast tumors compared to
BRCA1 and BRCA2 breast tumors, suggesting that these
miRNAs have higher specificity and specificity rates for
hereditary BRCAX as compared to BRCA1/2-mutated
breast tumors.
Subsequently, we generated a heatmap illustrating the

expression patterns of these potential biomarkers across
the samples based on a supervised hierarchical clustering
analysis (Fig. 3a). Even though most BRCA2 breast tu-
mors presented similar miRNA expression profiles to
BRCAX tumors as previously mentioned, we observed

that these potential biomarkers had significantly higher
mean fold change values among BRCAX samples as
compared to BRCA1 and BRCA2 breast tumors (Fig.
3b). Therefore, our findings suggest that these miRNAs
could be suitable in discriminating hereditary BRCAX
breast tumors from BRCA1/2-mutated breast tumors.

Functional in silico analysis
We further investigated the association of these 25 miR-
NAs with biological pathways related to carcinogenesis.
Previously described genes in breast cancer, such as TP53,
PTEN, and FOXO1, were identified as target genes in five
main pathways, including ErbB and FoxO signaling, the
PI3K-Akt signaling pathway, and miRNAs in cancer and
breast cancer. The most significant pathways of the targets

Table 1 Clinicopathological features of the patients included in the differential expression analyses

Characteristics HBC SBC NBT

BRCA1 BRCA2 BRCAX n = 23 BRCA1/2 WT

n = 15 n = 14 n = 14 n = 5 n = 3

Clinical

Age at diagnosis, y

Mean (SD) 43.73 (8.30) 44.57 (11.18) 41.78 (12.14) 48.73 (10.45) 41.80 (5.89) 58.00 (9.16)

Range 29–59 26–67 25–66 30–77 35–51 50–68

Pathological, n (%)

Grade (SBR)*

.. .1 1 (6,7) 0 1 (7.1) 0

.. .2 4 (26.7) 5 (35.7) 6 (42.9) 3 (13)

... 3 10 (66.7) 9 (64.3) 7 (50) 20 (87)

ER*

Negative 12 (80) 4 (28.6) 5 (35.7) 17 (73.9)

Positive 3 (20) 10 (71.4) 9 (64.3) 6 (26.1)

PR*

Negative 11 (73.3) 6 (42.9) 7 (50) 19 (82,6)

Positive 4 (26.7) 8 (57.1) 7 (50) 4 (17.4)

HER2 amplification*

Negative 14 (93.3) 12 (85.7) 11 (78.6) 19 (82,6)

Positive 1 (6.7) 2 (14.3) 3 (21.4) 4 (17.4)

Molecular subtype*

Luminal 4 (26.7) 11 (78.6) 9 (64.3) 6 (26.1)

HER2+ 0 0 2 (14.3) 1 (4.3)

Triple-negative 11 (73.3) 3 (21.4) 4 (21.4) 16 (69.6)

TNM*

I 2 (13.3) 0 3 (21.4) 1 (4.3)

II 9 (60) 4 (28.6) 9 (64.3) 11 (47.8)

III 3 (20) 8 (57.1) 1 (7.1) 10 (43.5)

IV 1 (6.7) 2 (14.3) 1 (7.1) 1 (4.3)

(*) For breast tumors only.
HBC, hereditary breast cancer; SBC, sporadic breast cancer; NBT, normal breast tissue; WT, wild-type; y, years; SD, standard deviation; SBR, Scarff-Bloom-Richardson;
ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2.
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Fig. 1 Heat map showing a supervised clustering of differentially expressed miRNAs between NBT and SBC. Each column indicates a sample and
each row, a miRNA. Red color indicates upregulation and green, downregulation

Fig. 2 Heat map showing a supervised clustering of differentially expressed miRNAs between NBT and HBC. Each column indicates a sample and
each row, a miRNA. Red color indicates upregulation and green, downregulation
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associated with breast neoplasm and those with putative
roles as oncogenes and TSGs are shown in Table 3.

Discussion
In the present study, miRNA expression profiles were ana-
lyzed in a series of hereditary breast tumors (BRCA1/2
and BRCAX-associated breast tumors), sporadic breast tu-
mors and NBT from BRCA1/2-germline mutation carriers
and non-carriers using NanoString nCounter Technology.
Initially, we identified differentially expressed miRNAs
that could determine a specific signature of SBC vs. NBT
that are related to miRNAs identified in previous studies
about sporadic breast tumors (i.e., hsa-miR-145-5p, hsa-
miR-429, hsa-miR-137, and hsa-miR-551a) [43–46]. Fur-
thermore, this analysis was important to identify a specific
miRNA signature for SBC and to investigate if any miR-
NAs are shared between SBC and HBC. Thus, we found
eight miRNAs (hsa-miR-627-3p, hsa-miR-99b-5p, hsa-
miR-539-5p, hsa-miR-24-3p, hsa-miR-331-3p, hsa-miR-
663a, hsa-miR-362-3p, and hsa-miR-145-5p) that were

also differentially expressed in HBC. These miRNAs were
used as a filter to our next analysis with hereditary breast
tumors and excluded to allow that we would have a spe-
cific miRNA expression profiles of HBC.
We found several differentially expressed miRNAs in

HBC compared to NBT with an expressive signature for
BRCAX breast tumors. Some of these have been previ-
ously described as deregulated in BRCA1/2-germline mu-
tation carriers, such as hsa-miR-141-3p; hsa-miR-20a-5p;
hsa-miR-21-5p; and hsa-miR-106b-5p [33, 47]. Those
miRNAs have also been reported to be deregulated in
sporadic breast tumors [33], supporting the hypothesis
that some miRNAs could have a relevant role in for both
sporadic and hereditary breast cancer carcinogenesis. Fur-
thermore, some of the differentially expressed miRNAs
were also found to be deregulated in some BRCA1/2-mu-
tated NBT cases, suggesting that NBTs from healthy
BRCA1/2-germline mutations carriers might display bio-
logical alterations due to genomic instability caused by im-
paired BRCA1 and BRCA2 functions.

Table 2 ROC curve analysis for miRNAs as potential biomarkers in hereditary breast cancer

Normal vs. BRCA1 Normal vs. BRCA2 Normal vs. BRCAX

microRNA Sen Spe AUC Cutoff Sen Spe AUC Cutoff Sen Spe AUC Cutoff

hsa-miR-28-5p 87% 88% 0.91 4.07 78% 88% 0.84 4.49 100% 100% 1.00 5.37

hsa-miR-361-3p 93% 75% 0.88 2.49 71% 100% 0.89 3.35 100% 100% 1.00 3.38

hsa-miR-93-5p 87% 100% 0.93 4.94 86% 100% 0.90 4.97 100% 100% 1.00 5.91

hsa-miR-32-5p 93% 75% 0.88 2.64 93% 100% 0.93 3.14 100% 100% 1.00 4.24

hsa-miR-191-5p 80% 88% 0.85 5.61 86% 100% 0.94 6.20 93% 100% 0.99 6.11

hsa-miR-27b-3p 87% 75% 0.88 3.48 71% 88% 0.82 4.02 100% 100% 1.00 4.74

hsa-miR-21-5p 60% 100% 0.81 7.20 86% 100% 0.89 7.11 100% 100% 1.00 7.88

hsa-miR-16-5p 73% 88% 0.87 6.07 78% 88% 0.85 5.92 100% 100% 1.00 6.54

hsa-miR-340-5p 67% 88% 0.83 3.55 78% 88% 0.87 3.55 93% 100% 0.99 4.16

hsa-miR-194-5p 100% 63% 0.81 1.71 78% 88% 0.86 2.78 93% 88% 0.95 2.69

hsa-miR-142-3p 80% 100% 0.93 6.10 71% 100% 0.82 7.39 93% 100% 0.98 6.92

hsa-miR-22-3p 80% 88% 0.91 3.50 78% 100% 0.84 4.13 100% 100% 1.00 4.10

hsa-miR-15b-5p 87% 75% 0.88 4.50 71% 100% 0.84 6.47 100% 100% 1.00 6.05

hsa-miR-141-3p 80% 100% 0.92 5.36 78% 100% 0.89 5.99 93% 100% 0.93 5.77

hsa-miR-106b-5p 87% 88% 0.92 3.80 93% 75% 0.88 3.21 100% 100% 1.00 4.49

hsa-miR-425-5p 93% 75% 0.85 1.66 86% 88% 0.95 2.21 93% 88% 0.96 2.43

hsa-miR-4454 + hsa-miR-7975 73% 100% 0.88 13.72 71% 88% 0.82 13.33 100% 100% 1.00 13.88

hsa-miR-196a-5p 73% 100% 0.87 4.24 86% 100% 0.96 4.29 100% 88% 0.99 4.07

hsa-miR-324-5p 80% 88% 0.88 3.07 86% 88% 0.84 3.29 86% 100% 0.95 3.62

hsa-miR-20a-5p + hsa-miR-20b-5p 67% 88% 0.80 5.06 71% 100% 0.83 5.79 100% 88% 0.98 5.01

hsa-let-7d-5p 73% 75% 0.83 5.90 71% 88% 0.81 6.36 100% 100% 1.00 6.64

hsa-miR-19a-3p 67% 100% 0.81 3.21 71% 88% 0.80 3.02 93% 100% 0.99 3.43

hsa-miR-146a-5p 100% 75% 0.89 3.78 71% 88% 0.85 4.42 86% 88% 0.95 4.43

hsa-miR-200c-3p 87% 75% 0.88 7.11 71% 100% 0.87 7.95 78% 100% 0.86 7.78

hsa-miR-106a-5p + hsa-miR-17-5p 60% 100% 0.81 4.79 64% 100% 0.80 4.84 78% 88% 0.92 4.47

Sen, sensitivity; spe, specificity; AUC, area under the curve.
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We also proposed to investigate whether those differen-
tially expressed miRNAs could be considered as potential
biomarkers for discriminate patients harboring BRCA1/2-
germline mutations from non-carriers. Indeed, many stud-
ies investigated the role of miRNAs as diagnostic
biomarkers in SBC, but little has been reported in heredi-
tary breast tumors. Although limited in terms of the num-
ber of specimens used for miRNA expression profiling,
Murria-Estal et al. identified 15 differentially expressed
miRNAs that could classify BRCA1, BRCA2, BRCAX and
sporadic breast tumors with 75% accuracy. However, miR-
NAs validated by quantitative polymerase chain reaction

(qPCR) (miR-4417 and miR-423-3p) could only discrimin-
ate hereditary (BRCA1, BRCA2, and BRCAX) from non-
hereditary breast tumors (70.1% accuracy) [31]. On the
other hand, Tanic et al. established a biomarker classifier
based on six miRNAs that could distinguish BRCA1/2-mu-
tated from non-mutated breast tumors with 92% accuracy
[32]. Both studies were primarily based on microarray tech-
nology for the screening of differentially expressed miR-
NAs, a laborious technique that requires complementary
DNA (cDNA) synthetized from highly stable messenger
RNAs (mRNA) – which are rarely obtained from FFPE tis-
sues and other low-quality samples – and experimental

Table 3 Top five pathways related to the best target candidates of miRNAs differentially expressed between normal tissues and
BRCA1/2-germline mutation carriers and BRCAX cases

Pathway Genes (targets) FDR-correctedP value

ErbB signaling pathway AKT2, AKT3, PRKCB, PLCG1, STAT5B, JUN, CDKN1A, CDKN1B, EGFR,
NRAS, MAP 2 K4, MAP 2 K1, ABL1, PIK3CB, NRG1, PIK3CA, SRC, CBL,
ERBB3, ERBB4, MAPK1, KRAS

2,89E-15

FoxO signaling pathway AKT2, AKT3, CREBBP, ATM, CDKN1A, CDKN1B, IKBKB, SGK1, EGFR,
NRAS, STAT3, STK11, CCND2, CCND1, EP300, MAP 2 K1, FOXO3,
FOXO1, SMAD2, SMAD4, SMAD3, BCL6, MDM2, PTEN, PIK3CB,
TGFBR2, PIK3CA, MAPK1, KRAS

2,89E-15

MicroRNAs in cancer TP63, PRKCB, TP53, PLCG1, CREBBP, ATM, EZH2, CDKN1A, CDKN1B,
BRCA1, IKBKB, RHOA, EGFR, NRAS, CDKN2A, STAT3, TNC, CCND2,
CCND1, PIM1, EP300, MAP 2 K1, FOXP1, CCNE1, NOTCH2, NOTCH1,
SOCS1, ABL1, HMGA2, CDK6, MDM2, BCL2, MDM4, FGFR3, PTEN,
CASP3, PIK3CA, MET, ERBB3, MAPK1, APC, KRAS

2,89E-15

PI3K-Akt signaling pathway PPP2R1A, AKT2, MYB, AKT3, KDR, TP53, CDKN1A, CDKN1B, BRCA1,
IKBKB, RAC1, JAK1, KIT, SGK1, EGFR, NRAS, TNC, STK11, CCND3,
CCND2, CCND1, MAP 2 K1, TSC1, CCNE1, CSF1R, FOXO3, CDK6,
MDM2, BCL2, FGFR3, FGFR2, FGFR1, PTEN, PIK3CB, ITGAV, PIK3CA,
MET, MAPK1, KRAS

2,89E-15

Breast cancer RB1, AKT2, AKT3, TP53, JUN, CDKN1A, BRCA1, NCOA1, KIT, EGFR,
NRAS, CTNNB1, CCND1, MAP 2 K1, NOTCH2, NOTCH1, ESR1, CDK6,
FGFR1, PTEN, PIK3CB, AXIN2, PIK3CA, MAPK1, TCF7L2, APC, KRAS

2,89E-15

FDR False discovery rate

Fig. 3 Expression patterns of the best biomarkers according to ROC curve analysis between NBT and HBC. a Heat map showing supervised
clustering of the best biomarkers. Each column indicates a sample and each row, a miRNA. Red color indicates upregulation and green,
downregulation. b Expressive upregulated cluster of miRNAs in hereditary breast cancer (especially BRCAX) vs normal breast tissues
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validation by qPCR. In the present study, we assessed
miRNA expression profiles in FFPE samples using Nano-
String technology – a high throughput, rapid, reproducible
and sensitive platform for molecular quantification that
does not require target sequence amplification and tech-
nical replicates [48–51]. All samples have accurate results
using NanoString technology. We found 25 upregulated
miRNAs that could classify HBC (especially BRCAX breast
tumors) with high accuracy rates according to ROC curve
analysis (AUC: ≥0.80). Because BRCAX patients have been
unnecessarily referred to BRCA1/2-germline mutation test-
ing [19–22], we assume that these miRNAs could identify
those patients that might not benefit from genetic testing
and personalized therapies, such as platinum-based chemo-
therapy and PARP inhibitors [34].
Finally, in silico pathway analysis identified several com-

mon target genes involved in breast cancer carcinogenesis
of the 25 miRNAs identified as potential biomarkers for
BRCA1/2-germline mutation carriers and BRCAX patients
using ReactomeFIViz. These genes are associated with im-
portant pathways, including ErbB and FoxO signaling, the
PI3K-Akt signaling pathway, and miRNAs in cancer and
breast cancer. However, because BRCAX breast tumors
were also included in the HBC group, we believe it is a limi-
tation of the present study, and further studies are needed
to investigate target genes and signaling pathways specific-
ally deregulated in BRCA1/2-mutated breast tumors. The
findings of this work showed that miRNA signatures could
serve as potential biomarkers to discriminate HBC that
could improve the low specificity rates of the models for
BRCA1/2-mutation prediction [19–22]. Further studies are
necessary to evaluate the inclusion of new miRNAs bio-
markers as additional parameters in the available prediction
models to provide a better selection of patients that should
proceed to BRCA1/2 genetic testing.

Conclusions
In conclusion, this work provides the first evidence of a
molecular profile of miRNAs that could discriminate with
high accuracy BRCA1/2-germline mutation carriers and
BRCAX from NBT in Brazilian women using NanoString
technology. Furthermore, these miRNAs could have po-
tential value as a complementary clinical diagnostic tool
to identify breast cancer patients that could benefit from
BRCA1/2-mutations genetic testing and personalized clin-
ical management. However, further larger prospective
studies are required to validate these profiles.
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