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Background: Gene fusions have been successfully employed as therapeutic targets for lung 
adenocarcinoma. However, tissue availability for molecular testing of multiples alterations is frequently 
unfeasible. We aimed to detect the presence of ALK, RET, and ROS1 rearrangements by a RNA-based 
single assay in Brazilian lung adenocarcinomas and to associate with clinicopathological features and genetic 
ancestry.
Methods: From a FFPE series of 444 molecularly characterized lung adenocarcinomas, 253 EGFR/KRAS 
wild-type cases were eligible for gene rearrangement analysis. Following RNA isolation, ALK, RET, and 
ROS1 rearrangements were simultaneously analyzed employing the ElementsXT Custom panel (NanoString 
Technologies). Rearrangements were further associated with clinicopathological features and genetic ancestry 
of the patients. 
Results: The NanoString platform was performed in subset of 142 cases. Gene fusion results were 
conclusive for 94.4% (n=134) cases (failure rate =5.6%). ALK rearrangements were observed in 21 out of 134 
cases, and associated with younger, never smokers, metastatic disease, and metastases in the central nervous 
system. RET and ROS1 fusions were detected in two and one out of 134 cases, respectively. Genetic ancestry 
was not associated with gene fusions. Overall, considering all cases for which a molecular analysis was 
conclusive (EGFR/KRAS/ALK/RET/ROS1), ALK fusions frequency was observed in 6.5% (21/325), RET in 
0.6% (2/325), and ROS1 in 0.3% (1/325).
Conclusions: This study successfully used a RNA-based single assay for the simultaneous analysis of ALK, 
RET, and ROS1 fusions employing routine biopsies from Brazilian patients lung adenocarcinoma allowing an 
extensive molecular testing for actionable rearrangements contributing to guide clinical strategies.
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Introduction

Lung cancer is the leading cause of cancer deaths in 
the world (1). Non-small cell lung cancer (NSCLC) 
accounts for the majority of lung cancer cases (85%), with 
adenocarcinoma being the most common histologic subtype 
(1,2). Most of the NSCLC cases are diagnosed in late stages 
when treatment has no curative intent. The development of 
oncogene-driven therapies has revolutionized the treatment 
of NSCLC dramatically, increasing the overall survival of 
advanced NSCLC patients (3-6). EGFR mutations are the 
most frequent actionable alterations in patients with lung 
adenocarcinomas (2,7,8). Other driver genomic alterations 
are ALK, RET, and ROS1 rearrangements, which can also 
be targeted for tyrosine kinase inhibitors (TKIs) (2,9). 
Although these genetic rearrangements are actionable, and 
the frequency of them is broadly investigated worldwide, the 
frequency of RET and ROS1 rearrangements is unknown 
in Brazilian patients (10-12). Moreover, Brazilian patients 
have a high admixture background, with contribution from 
European, African, Native American (Amerindian), and, 
more recently, Asian ethnicities (8,13,14). Therefore, the 
impact of actionable alterations on clinicopathological 
characteristics of NSCLC patients should be deeply 
explored (8,10,11,15,16).

Although significant efforts have been made on 
molecular techniques for the detection of actionable 
alterations in NSCLC, the scarcity of tumor cells in 
tumor biopsies due to the sampling procedures remains 
a challenge for molecular analysis. Targeted panels and 
multiplexed assays have been employed for optimizing 
molecular analysis of actionable genes in NSCLC, including 
a sequential approach for analysis’ feasibility on small 
tissue samples (17-22). We have previously reported the 
frequency of EGFR in 444 Brazilian lung adenocarcinomas 
and the association with Asian ancestry as well as the rate 
of KRAS mutations and its association with an unfavorable  
prognosis (8). In the present study, the ALK, RET, and ROS1 
rearrangements were analyzed employing a single multiplex 
assay, and their associations with clinicopathological features 
and genetic ancestry were investigated. The detection 
of ALK, RET, and ROS1 rearrangements has a direct 
impact on clinical management of lung adenocarcinoma 
patients accruing in a shorter turnaround time through 
the employment of a single multiplexed assay enabling the 
tailored treatment as early as possible. 

We present the following article in accordance with the 
STROBE reporting checklist (available at http://dx.doi.

org/10.21037/tlcr-20-740). 

Methods

Study population and design

This retrospective study was conducted at the Molecular 
Oncology Research Center, the Department of Pathology, 
and the Department of Molecular Diagnosis, from patients 
diagnosed with lung adenocarcinoma (n=444) at Barretos 
Cancer Hospital from 2011 to 2014. All sociodemographics 
and clinicopathological data were collected retrospectively 
from medical records. Patients’ outcomes were collected 
from SISOnco (institutional software) and an active search 
was conducted when outcomes were not available from 
medical records (last updated: October 2019). Data on 
the main clinicopathological features and EGFR/KRAS 
mutation status and genetic ancestry of these cases were 
recently reported (8). Since the main molecular alterations 
in lung adenocarcinoma are well known to be mutually 
exclusive with EGFR and KRAS mutations, only EGFR / 
KRAS wild-type lung adenocarcinoma cases (n=253) were 
enrolled in the present study (Figure 1). However, due to a 
lack of available tumor tissue (n=91) or low RNA quantity 
(lower than 100 ng, n=20), gene fusions were evaluated in 
142 EGFR/KRAS wild-type cases (Figure 1).

This study was approved by the local ethics committee 
(Barretos Cancer Hospital IRB/Project No. 630/2012), with 
the exemption of informed consent. The methodology was 
performed following the Declaration of Helsinki (as revised 
in 2013).

RNA isolation

3/"�JTPMBUJPO�XBT�QFSGPSNFE�GSPN�GPSNBMJO�òYFE�QBSBGòO�
embedded (FFPE) tumor samples, sectioned on slides with a 
thickness of 10μm as previously reported (23). One slide was 
stained with hematoxylin and eosin (H&E) and evaluated 
by an experienced pathologist for identification, sample 
adequacy assessment, and selection of the tumor tissue area 
(minimum of 70% tumor area). RNA was isolated using a 
commercial kit (RNeasy FFPE Mini Kit, Qiagen, Hilden, 
Germany) according to the manufacturer's instructions. 

Simultaneous detection of ALK, RET and ROS1 
rearrangements by NanoString custom panel

Detection of ALK, RET, and ROS1 rearrangements was 
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performed in 142 out of the 253 EGFR/KRAS wild-type 
cases since, in 91 cases, the tissue was unavailable and in 20 
DBTFT�JO�XIJDI�UIF�3/"�RVBOUJUZ�XBT�JOTVGòDJFOU�	Figure 1). 
The nCounter® Elements XT (NanoString Technologies, 
Seattle, WA, USA) custom panel was designed following 
previously described techniques for the evaluation of 
transcripts using specific probes. It contained 24 probes 
for the 5' and 3' regions of the ALK, RET and ROS1 
HFOFT�BMPOH�XJUI����TQFDJòD�QSPCFT�GPS�UIF�SFBSSBOHFNFOU�
partners (EML4-ALK, KIF5B-ALK, TGF-ALK; CCDC6-
RET, KIF5B-RET; CD74-ROS1, EZR-ROS1, GOPC-ROS1, 
LRIG3-ROS1, SLC34A2-ROS1, TPM3-ROS1, SDC4-
ROS1) (20). Briefly, from 100 to 300 ng of total RNA 
TBNQMFT�XFSF�IZCSJEJ[FE�XJUI�TQFDJòD�QSPCFT�GPS����IPVST�
at 67 °C. The hybridized complexes were purified in the 
PrepStation (NanoString Technologies) and immobilized 
in the cartridge. The cartridge was scanned by the Digital 
Analyzer (NanoString Technologies) for counting the 
transcripts (24). The positive controls used were an ALK-
positive cell line (H2228 cell line) and a commercial control 
harboring ALK, RET, and ROS1 rearrangements (Horizon 
Discovery, Cat. No.: HD784). 
The transcripts counts were normalized by the nSolver 
Analysis® Software v4.0 (NanoString Technologies), using 
the ratio of geometric mean for each sample and arithmetic 
mean of all samples for positive assay controls and reference 
genes (housekeepings). Inconclusive results were considered 
when counts lower than 300 counts were obtained for 

GAPDH. The calculation of the imbalance probes was 
EFòOFE�CZ�UIF�SBUJP�CFUXFFO�HFPNFUSJD�NFBO�PG����QSPCFT�
and the average of 5' probes, considering thresholds for 
ALK rearrangement positivity equal to 2, for RET equal to 
5 and for ROS1 equal to 3, as previously reported (20,22). 
Imbalance analysis, detection of fusion partners (count 
more of 50), and graphical construction was performed in 
R environment v3.4.1 with scripts implemented in the local 
Galaxy server (25).

Detection of ALK, RET and ROS1 rearrangements by 
NanoString Lung Fusion Panel (nCounter Vantage 3D™)

Validation of the presence of ALK, RET, and ROS1 
rearrangements was performed using the Lung Fusion assay 
(NanoString Technologies). This assay was designed for the 
FWBMVBUJPO�PG�USBOTDSJQUT�VTJOH�TQFDJòD�QSPCFT�GPS�UIF����BOE�
3' regions from ALK, RET, and ROS1 genes and specific 
probes for the rearrangement partners from ALK, RET, 
ROS1 and NTRK1 (no NTRK imbalance probes are provided 
in this assay). The transcription counts were normalized 
by the nSolver Analysis® Software v4.0 (NanoString 
Technologies). The calculation of the imbalance between 
the 3' and 5' probes was performed by a t-test comparing 
the log-scale data from probes. A significant P value 
provided the final positive result about fusion presence 
from the t-test plus the detection of fusion partners. These 
analyses were conducted using the Advanced Analysis v2.0 

Figure 1�4BNQMJOH�XPSLóPX�GPS�#SB[JMJBO�MVOH�BEFOPDBSDJOPNB�TFSJFT��''1&
�GPSNBMJO�òYFE�QBSBGòO�FNCFEEFE�UJTTVF�

Lung adenocarcinomas
(FFPE tissue)

n=444

EGFR/KRAS wild-type cases 
n=253

Multiplexed assay for detection of
ALK/RET/ROS1 rearrangements

n=142

Conclusive detection of ALK/RET/ROS1 
rearrangements

n=134

EGFR-mutated cases 
n=101 (22.7%)

KRAS-mutated cases 
n=90 (20.4%)

Excluded - unavailability 
of tumor tissue

 n=91 (36%)
Excluded - Low RNA quantity

n=20 (7.9%)

Inconclusive cases 
GAPDH counts <300

n=8 (5.6%)
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package (NanoString Technologies).

Fluorescence in situ hybridization (FISH)

Detection of RET and ROS1 rearrangements was performed 
using commercial probes (ZytoLight SPEC RET Dual 
Color Break Apart, ZytoLight SPEC ROS1 Dual Color 
Break Apart). Breast adenocarcinoma tissue was used as 
a negative control. For considering the sample suitable 
for evaluation, more than 15% of positive cells in at least 
100 cells should be present. Hybridization reactions were 
repeated twice. FISHView 7.0 software (Applied Spectral 
Imaging) was employed for the analysis. 

Ancestry analysis

The genetic ancestry background was previously assessed 
in the tumor DNA by a panel of 46-ancestry informative 
markers that allow estimating the ancestral proportions of 
African (AFR), European (EUR), Asian (ASN), and Native 
American (AME) populations (8). 

Statistical analysis

Univariate (t-test/ Fisher’s exact test/ chi-square test) and 
multivariate (Linear regression model) analyses were used 
UP�EFUFSNJOF�JG�HFOF�SFBSSBOHFNFOUT�IBE�B�TJHOJòDBOU�FGGFDU�
on the investigated parameters. Kaplan-Meier method and 
Log-rank test were used for univariate survival analysis, 
and Cox, the proportional hazards model, was used for 
multivariate survival analysis. For survival analysis, death 
was considered as an event, and live patients or patients 
who lost follow up were considered as censored. The 
survival analysis was conducted only for patients diagnosed 
at stage IV to decrease bias regarding the clinical outcome. 
Statistical analysis performed by IBM SPSS® Statistics Base 
TPGUXBSF�	*#.
�"SNPOL
�/:
�XJUI�B�����TJHOJòDBODF�MJNJU�

Results

Clinicopathological and sociodemographic features 

The NanoString results were conclusive in 94.4% of the 
cases (n=134), resulting in a failure rate of 5.6% (8 out of 
142 presented inconclusive results) (Figure 1). Overall, the 
majority of the patients was male (63%; n=85), with an 
average age of 60 years old, self-reported as white (77%; 

n=103), current or former smokers (75%; n=62 and n=38, 
respectively), diagnosed at stage IV (70%; n=94) and 
presented with metastasis in multiple sites at diagnosis (43%; 
n=58) (Table 1).

ALK rearrangements and clinicopathological associations

ALK rearrangements were detected in 15.7% of the EGFR/
KRAS wild-type cases (21 out of 134) (Figure 2) (Table S1). 
The most frequently observed rearrangement partner was 
EML4-ALK (33.3%; 7 out of 21) (Figure 2). As expected, 
both commercial control and H2228 cell line were positive 
for ALK rearrangement, validating the assay. When 
considering all the 325 molecularly analyzed cases (134 
plus 101 EGFR-mutated and 90 KRAS-mutated cases), we 
observed a frequency of 6,5% (21/325) of ALK gene fusions.

The presence of ALK rearrangements was associated 
with younger age at diagnosis (P=0.049), never smokers 
(P<0.0001), disease stage IV at diagnosis (P=0.019), 
metastases in multiple sites (P=0.003) and presence of 
metastases in central nervous system (CNS) (P=0.023; 
Table 1). Gender, self-reported color, loss of weight, 
genetic ancestry, ECOG PS were not associated with ALK 
rearrangements. The presence of ALK rearrangements was 
not associated with clinical outcome (P=0.486; Figure S1). 

In  mult ivar iate  analys i s ,  the  presence of  ALK 
rearrangements was associated with never smokers (OR 
=12.432; P<0.0001; Table 2) and presence of metastasis in  
central nervous system (CNS) (OR =13.224; P=0.029; Table 2). 

RET and ROS1 rearrangements

RET and ROS1 rearrangements were detected in two 
and one out of 134 cases, respectively (Figures 3,4)  
(Table S1
��/P�SFBSSBOHFNFOU�QBSUOFS�XBT�JEFOUJòFE�JO�UIF�
RET and ROS1 positive cases. No statistical associations 
with the clinicopathological characteristics could be 
performed due to the low sample size. Overall, RET positive 
cases were male, never smokers, diagnosed at stage IV, 
and presented with metastases in the CNS. ROS1 positive 
case was female, never smoker, diagnosed at stage IV, and 
presented with lymph node metastases. 

When considering all the 325 molecularly for which a 
molecular analysis was conclusive (134 plus 101 EGFR-
mutated and 90 KRAS-mutated cases), we observed a 
frequency of 0.6% (2/325), and 0.3% (1/325), for RET and 
ROS1, respectively.
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Table 1 Association between ALK rearrangements and clinicopathological features and ancestry background of Brazilian lung adenocarcinoma 
patients (n=134)

Variables Parameters
ALK rearrangement

n Negative (%) Positive (%) P value

Age1 ≤60 years 64 76.6 23.4 0.18

>60 years 70 91.4 8.6

Gender Male 85 88.2 11.8 0.101

Female 49 77.6 22.4

Self-reported color4 White 103 85.4 14.6 0.209

Brown 20 80 20

Black 7 85.7 14.3

Yellow 1 0 100

Missing 3

Smoking Status Never smoker 30 60 40 <0.0001

Current 62 95.2 4.8

Former 38 86.8 13.2

Missing 4

Disease staging
at diagnosis

I e II 18 100 0 0.019

III 22 95.5 4.5

IV 94 78.7 21.3

Metastasis at diagnosis No 39 97.4 2.6 0.003

One site 37 89.2 10.8

Multiple sites 58 72.4 27.6

Sites of Metastasis at  
diagnosis

No 39 97.4 2.6

CNS 35 77.1 22.9 0.023

Others sites 60 80 20

PS ECOG 0 10 90 10 0.417

1 68 82.4 17.6

2 25 88 12

3 22 90.9 9.1

4 8 62.5 37.5

Missing 1

Loss of weight2 No 60 85 15 0.907

<10% 45 82.2 17.8

>10% 21 85.7 14.3

Missing 8

Table 1 (continued)
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Table 1 (continued)

Variables Parameters
ALK rearrangement

n Negative (%) Positive (%) P value

ASN ancestry3 Low 44 93.2 6.8 0.126

Intermediate 43 81.4 18.6

High 46 8.3 21.7

Missing 1

AFR ancestry3 Low 44 86.4 13.6 0.635

Intermediate 44 84.6 13.6

High 45 80 20

Missing 1

EUR ancestry3 Low 44 79.5 20.5 0.482

Intermediate 44 84.1 15.9

High 45 88.9 11.1

Missing 1

AME ancestry3 Low 44 88.6 11.4 0.410

Intermediate 42 85.7 14.3

High 47 78.7 21.3

Missing 1

n, number of patients; PS ECOG, performance status ECOG (Eastern Cooperative Oncology Group); CNS, central nervous system. 1, age 
at diagnosis was dichotomized according to the average age of the series. 2, loss of weight <10% and >10% of total body weight. 3, Cut 
off values were determined according to tercile categorization. ASN, Asian ancestry; AFR, African ancestry; EUR, European ancestry; 
AME, Amerindian ancestry. 

Validation of the ALK, RET and ROS1 rearrangements

ALK rearrangements detection by NanoString using 
the same gene panel  was previously val idated by 
immunohistochemistry by our group (23). Concerning RET 
and ROS1, rearrangements were further analyzed by FISH; 
however the experiments were considered inconclusive due 
UP�UIF�JOTVGòDJFOU�OVNCFS�PG�TJHOBMT�PCTFSWFE
�QSPCBCMZ�EVF�
to pre-analytical issues of the tissue (Figure S2). 

Due to unsuccessful attempts for confirming RET and 
ROS1 rearrangements by FISH, we further validated 
the results for the cases exhibiting RET (n=2) and ROS1 
rearrangements (n=1) with the commercial Lung Fusion 
assay (Figure S3). Both RET-positive samples were 
DPOòSNFE�BT�QPTJUJWF�CZ�UIF�-VOH�'VTJPO�BTTBZ�	Figure S3A  
and S3C
��*O�POF�PG�UIFO
�UIF�QBSUOFS�XBT�JEFOUJòFE�KIF5B 
(Figure S3F). Although the known KIF5B-RET fusion 
partner was included in our custom panel, the variant 

(variant 12) that was detected is not included in our custom 
panel. 

The ROS1�QPTJUJWF�TBNQMF�XBT�BMTP�DPOòSNFE�BT�QPTJUJWF�
by the Lung Fusion assay (Figure S3B), and no fusion 
QBSUOFS�XBT�JEFOUJòFE�	Figure S3E). 

Ancestry analysis

The mean of ancestry proportions observed among the 134 
NSCLC patients was 74.7% for the EUR, 13.1% for the 
AFR, 5.8% for the AME, and 6.4% for the ASN (Figure S4). 
The mean of ancestry proportions observed among the 444 
NSCLC patients was 73.1% for the EUR, 13.1% for the 
AFR, 6.5% for the AME, and 7.3% for the ASN (Figure S5 
and Table S2) as previously reported (8). In accordance with 
a high percentage of EUR, most patients were self-declared 
white (Table 1). The presence of ALK rearrangements was not 
correlated with genetic ancestry (Table 1).
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Figure 2 Representative graph of ALK rearrangements obtained from the analyzed samples (cut-off =2 for ALK) (20). The y-axis represents 
the packing ratio between the 3' and 5' regions for the ALK gene. The x-axis represents the RNA samples analyzed in the study.

Table 2 Multivariate analysis of the association between clinicopathological features and the presence of ALK rearrangements

Variables Parameters HR 95% CI P value

Age >60 years Ref. Ref. Ref.

≤60 years 0.338 0.103–1.077 0.067

Smoking Status Current smoker Ref. Ref. Ref.

Former smoker 4.207 0.866–20.452 0.075

Never Smoker 12.432 2.950–52.390 0.001*

Sites of Metastasis at Diagnosis No Ref. Ref. Ref.

Yes, others sites 9.11 1.018–81.544 0.048*

Yes, CNS 13.224 1.303–134.168 0.029*

Ref., reference variable; HR, hazard risk; CI, confidence interval; CNS, central nervous system; P value: significance of t-test. *Significant.

Although Barretos Cancer Hospital is located in the 
upstate of Sao Paulo, it is a reference center that assists 
patients from all over the country. Although not all 
Brazilian states are currently represented in our series and 
the Southeast of Brazil is the most represented region, all 
ancestry proportions are represented in the current series 
(Figure S6). 

Discussion

The identification of actionable molecular alterations has 
conferred therapeutic relevance for advanced NSCLC 
patients. Although several studies have reported the 
frequency of these molecular alterations, they were 
performed mostly in European and Asian populations. 
Data on admixture populations remain lacking. In this 
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Figure 3 Representative graph of RET rearrangements obtained from the analyzed samples (cut-off =5 for RET) (20). The y-axis represents 
the packing ratio between the 3' and 5' regions for the RET gene. The x-axis represents the RNA samples analyzed in the study.

Figure 4 Representative graph of ROS1 rearrangements obtained from the analyzed samples (cut-off =3 for ROS1) (20). The y-axis 
represents the packing ratio between the 3' and 5' regions for the ROS1 gene. The x-axis represents the RNA samples analyzed in the study.
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study, we reported the frequency of ALK, RET, ROS1 
rearrangements in a Brazilian series of lung adenocarcinoma 
using a single multiplexed assay, and the association of 
these rearrangements with clinicopathological features and 
ancestry. 

In the present series, we have previously reported the 
frequency of EGFR (22.7%) and KRAS mutations (20.4%) 
(8). Regarding ALK, RET, and ROS1 rearrangements, it is 
well known that they are all mutually exclusive and mutually 
exclusive with other driver mutations, so only EGFR and 
KRAS wild-type cases were evaluated (26-30). 

8F�JEFOUJòFE�ALK rearrangements in 6.5% (21/325) of 
lung adenocarcinomas, which is in line with the reported 
worldwide. The frequency of ALK rearrangements in 
the literature varies from 3% to 10.8% (31-33). In Latin 
America, a study enrolling 5,130 NSCLC patients from 
10 countries (excepting Brazil), the frequencies of ALK 
rearrangements ranged from 4.1% to 10.8% (Colombia 
4.1%; Panama 4.4%; Uruguay 5.4%; Argentina 6.0%; 
Mexico 7.6%; Chile 8.6%; Venezuela 8.9%; Costa Rica 
9.5%; Peru 10.8%) (34). In Brazil, two recent studies 
employing immunohistochemistry, one from Northeast 
and another from South, reported frequencies of ALK 
rearrangements of 10.4% (n=173 patients) and 4% (n=275 
patients), respectively (10,12). The frequency of ALK 
rearrangements in the present work is in between other 
Brazilian studies. Such variation could be explained by the 
admixture background of the Brazilian population (35), 
since ancestry background is a factor that may influence 
the frequency of actionable alterations (36). Although 
the Southeast of Brazil is the most represented region 
in the current series, all ancestry proportions are indeed 
represented. Yet, our ancestry analysis did not identify any 
TJHOJòDBOU�BTTPDJBUJPO��

We observed that the presence of the ALK rearrangements 
was associated with younger age, never smokers, and the 
presence of metastases in CNS, in line with some studies 
(37,38). Considering that ALK-positive patients are 
recurrently younger and associated with advanced disease at 
diagnosis, these cases may be more aggressive even from the 
CFHJOOJOH�PG�UIF�EJTFBTF��'PS�UIJT�SFBTPO
�UIF�JEFOUJòDBUJPO�
of driver alterations becomes even more important to guide 
treatment with targeted therapies. ALK-positive patients 
are eligible for treatment with crizotinib (5). In this present 
study, only one ALK-positive patient enrolled in a clinical 
trial (phase III-2013) was treated with crizotinib. Although 
treatment with ALK inhibitors is approved by the Brazilian 
regulatory agency (ANVISA), patients do not have access to 

treatment via the public health system (39).
Regarding RET  and ROS1  rearrangements,  the 

frequency observed in our overall series was 0.6% (2/325) 
and 0.3% (1/325), respectively. The frequency of RET 
rearrangements in lung adenocarcinoma is lower than 2% 
worldwide, ranging from 0.2-1.9% in Asian patients and 
1.3% in patients from USA (27,32,40-43). The frequency of 
ROS1 rearrangements in lung adenocarcinoma is variable, 
ranging from 1.2% in Europeans patients and reaching 
3.4% in Chinese patients (40,42,44,45). There are no 
reports on the presence of RET and ROS1 rearrangements 
in the Brazilian or any other admixture population. Due 
to the small number of RET and ROS1-positive cases, no 
statistical analysis could be performed. Anyhow, similarly 
to ALK-positive cases, the presence of RET and ROS1 
rearrangements were observed in younger patients, and 
never smokers (36,40,42,43,46,47). Despite the shallow 
frequency of RET  and ROS1  rearrangements, they 
constitute important therapeutic actionable alterations. 
The ALK-inhibitors, have also demonstrated success in the 
treatment of ROS1-positive patients, and it was approved by 
USA-FDA, and Brazilian ANVISA for these patients (4,48). 
Concerning RET rearrangements, the TKi selpercatinib 
(LOXO-292) has recently been approved by the FDA for 
the treatment of lung and thyroid tumors, due to the highly 
promising results obtained by clinical trials (ClinicalTrials.
gov: NCT04268550 and ClinicalTrials.gov: NCT03157128) 
(49-51).

Due to a large number of driver alterations and the 
scarcity of tumor tissue usually available for molecular 
testing of NSCLC patients, the use of multiplexed 
assay platforms for FFPE can be a powerful tool. The 
NanoString technology is very robust, sensitive, easy to 
execute, with multiplex capabilities, and more cost-effective 
when custom panels are employed, surpassing FISH, 
IHC, and NGS techniques (22,23). We have previously 
shown that the NanoString platform managed to identify 
the presence of ALK rearrangements in FFPE samples, 
highlighting its capacity to detect RNA transcripts in 
highly degraded samples employing low RNA input (23).  
Likewise,  in the extended study, the detection of 
rearrangements in FFPE samples was feasible, even in 
samples that lead to inconclusive FISH results. Moreover, 
due to the multiplex capability of the NanoString platform, 
it was possible to detect both gene rearrangements and 
known partners (20,22,23). Our panel includes the most 
observed rearrangement partners for each gene investigated 
as well as variants of these partners. Thus, it was possible 
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to identify the rearrangement partners for ALK and RET-
positive cases in our study. Importantly, the possibility of 
custom panels, allowed to add novel gene rearrangements 
and new variants from fusion partners, such as with NTRK 
rearrangements (18,52). This maximizes the number of 
patients for oncogene-driven therapy for NSCLC with no 
additional tissue sample required and minimally increased 
in the test cost. In addition, the employment of a single 
multiplexed assay accrues in a shorter turnaround time for 
report release enabling the tailored treatment as early as 
possible.

One limitation of the present study is that the number 
of patients in the present study does not portrait the entire 
Brazilian lung cancer population, and further studies 
analyzing a higher number of cases and patients from all 
regions of Brazil are warranted.

Conclusions

Our study successfully used a single assay for the detection 
of ALK, RET, and ROS1 fusions in FFPE biopsies of lung 
adenocarcinoma. The NanoString methodology allows 
an extensive molecular investigation of the significant 
actionable gene rearrangements potentially to be employed 
in the diagnostic routine for contributing to better guide 
clinical treatment strategies for Brazilian patients with lung 
adenocarcinoma.
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Supplementary

Figure S2 3FQSFTFOUBUJPO�PG�UIF�óVPSFTDFODF�in situ hybridization (FISH) for (A) RET (n = 1) and (B) ROS1�	O����
�SFBSSBOHFNFOUT�	SFTVMUT�
PCUBJOFE�CZ�UIF�/BOP4USJOH�QMBUGPSN
��5IFTF�SFTVMUT�PCUBJOFE�CZ�'*4)�XFSF�DPOTJEFSFE�oJODPODMVTJWFp�	MPX�WJTVBMJ[BUJPO�PG�IZCSJEJ[BUJPO�
TJHOBM
��/FHBUJWF�DPOUSPMT�	CSFBTU�UJTTVF
�GPS�	$
�RET and (D) ROS1�SFBSSBOHFNFOUT�XFSF�BMTP�SFQSFTFOUFE��"MM�FYQFSJNFOUT�XFSF�SFQFBUFE�
UXJDF�

Figure S1�,BQMBO�.FJFS�DVSWFT�GPS�PWFSBMM�TVSWJWBM�	04
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Table S1 3FQPSU�GSPN�(BMBYZ�TFSWFS�PG�SBUJPT�PG�JNCBMBODF�PG�"-,
�3&5�BOE�304��JO�TBNQMFT�BOBMZ[FE

ALK ratio RET ratio ROS1 ratio

Horizon Commercial Control 2.59 6.19 4.76

H2228 cell line 3.54 0.33 0.50

Sample 1 6.10 0.67 0.90

Sample 2 6.66 0.70 1.02

Sample 3 5.49 0.19 0.50

Sample 4 4.56 1.06 0.14

Sample 5 6.56 0.33 0.06

Sample 6 4.07 0.76 0.48

Sample 7 2.90 0.54 0.10

Sample 8 4.87 0.60 1.88

Sample 9 1.58 0.57 1.30

Sample 10 1.92 0.18 0.72

Sample 11 8.17 0.49 1.27

Sample 12 8.55 0.13 0.83

Sample 13 2.43 0.36 1.10

Sample 14 4.30 0.24 1.25

Sample 15 6.71 1.08 1.19

Sample 16 3.07 1.19 1.10

Sample 17 3.49 0.29 1.07

Sample 18 5.96 0.17 0.51

Sample 19 5.08 0.20 1.36

Sample 20 8.12 0.49 1.27

Sample 21 2.43 0.36 1.10

Sample 22 0.39 9.85 0.13

Sample 23 0.20 7.96 0.36

Sample 24 0.52 0.64 3.02

Sample 25 0.49 1.11 0.08

Sample 26 0.88 1.00 1.08

Sample 27 1.57 1.00 0.97

Sample 28 0.28 0.27 0.75

Sample 29 0.45 0.33 0.64

Sample 30 0.33 0.85 0.33

Sample 31 0.33 0.19 0.08

Sample 32 0.24 0.70 0.20

Sample 33 0.24 0.49 0.41

Table S1 (continued)
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Table S1 (continued)

ALK ratio RET ratio ROS1 ratio

Sample 34 1.70 0.58 1.05

Sample 35 0.20 0.56 0.36

Sample 36 0.05 0.12 0.05

Sample 37 0.19 0.39 0.46

Sample 38 0.23 1.39 0.35

Sample 39 0.17 0.21 0.77

Sample 40 0.09 0.36 0.05

Sample 41 0.13 0.84 0.18

Sample 42 0.53 0.30 1.62

Sample 43 0.61 0.80 0.66

Sample 44 0.32 0.23 0.16

Sample 45 0.44 0.29 0.20

Sample 46 0.41 0.44 1.18

Sample 47 0.47 1.17 0.27

Sample 48 0.52 0.54 0.21

Sample 49 0.80 0.75 0.68

Sample 50 0.11 0.27 0.08

Sample 51 0.12 0.16 0.23

Sample 52 0.56 0.58 1.78

Sample 53 0.15 0.13 0.10

Sample 54 0.20 0.21 0.11

Sample 55 0.79 1.10 0.88

Sample 56 0.37 0.56 0.60

Sample 57 0.24 1.23 1.13

Sample 58 0.34 0.87 0.03

Sample 59 0.33 0.20 0.45

Sample 60 0.33 0.28 0.10

Sample 61 0.31 0.18 0.04

Sample 62 1.78 0.57 0.12

Sample 63 0.35 0.17 1.09

Sample 64 0.46 0.28 0.35

Sample 65 0.51 1.14 1.06

Sample 66 0.41 0.28 0.20

Sample 67 0.33 0.21 0.93

Sample 68 0.35 0.49 0.76

Table S1 (continued)



© Translational Lung Cancer Research. All rights reserved. http://dx.doi.org/10.21037/tlcr-20-740

Table S1 (continued)

ALK ratio RET ratio ROS1 ratio

Sample 69 0.37 0.31 0.89

Sample 70 0.48 0.25 0.23

Sample 71 0.40 0.12 0.06

Sample 72 0.43 0.78 0.04

Sample 73 0.71 0.67 0.19

Sample 74 1.76 0.51 1.01

Sample 75 0.70 0.67 0.13

Sample 76 0.43 0.36 0.49

Sample 77 0.79 0.52 0.50

Sample 78 0.20 0.10 1.07

Sample 79 0.20 0.42 0.32

Sample 80 0.26 0.20 1.03

Sample 81 0.55 0.70 0.09

Sample 82 0.68 0.31 0.10

Sample 83 0.19 1.03 0.06

Sample 84 0.31 0.04 0.07

Sample 85 0.19 0.82 0.09

Sample 86 0.71 0.12 0.77

Sample 87 0.97 0.90 0.86

Sample 88 0.76 0.09 2.05

Sample 89 0.82 0.89 0.95

Sample 90 0.20 1.05 0.77

Sample 91 0.80 1.00 1.05

Sample 92 1.00 1.00 1.00

Sample 93 1.08 0.93 0.50

Sample 94 1.00 1.00 1.34

Sample 95 0.50 0.62 0.54

Sample 96 0.33 0.60 0.71

Sample 97 0.94 0.58 1.13

Sample 98 1.00 1.03 0.67

Sample 99 0.46 0.79 1.49

Sample 100 0.98 0.94 0.65

Sample 101 1.56 1.03 0.71

Sample 102 0.40 0.57 0.79

Sample 103 0.50 2.29 0.81

Table S1 (continued)
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Table S1 (continued)

ALK ratio RET ratio ROS1 ratio

Sample 104 0.28 0.50 0.65

Sample 105 0.15 0.55 0.35

Sample 106 0.51 0.55 0.70

Sample 107 0.91 0.95 0.95

Sample 108 0.68 1.02 0.91

Sample 109 0.49 0.98 0.67

Sample 110 0.62 0.72 0.87

Sample 111 0.36 0.76 0.65

Sample 112 0.46 0.97 1.46

Sample 113 0.33 0.65 0.67

Sample 114 1.19 0.94 0.86

Sample 115 0.67 1.02 1.21

Sample 116 0.27 0.74 0.96

Sample 117 0.37 0.76 0.91

Sample 118 0.53 0.63 0.84

Sample 119 0.42 0.68 0.91

Sample 120 1.90 0.87 0.89

Sample 121 0.56 0.82 0.54

Sample 122 0.49 0.71 0.82

Sample 123 0.45 1.14 0.40

Sample 124 0.46 1.14 0.79

Sample 125 0.60 1.07 0.93

Sample 126 0.60 0.82 1.45

Sample 127 0.14 0.76 1.29

Sample 128 0.67 0.83 0.54

Sample 129 1.89 0.65 0.77

Sample 130 0.53 0.85 0.61

Sample 131 0.71 1.20 0.57

Sample 132 0.75 0.63 0.54

Sample 133 0.44 0.57 0.92

Sample 134 0.20 1.02 0.86
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Table S2 "ODFTUSZ�CBDLHSPVOE�DBUFHPSJ[BUJPO�PG�#SB[JMJBO�MVOH�BEFOPDBSDJOPNB�QBUJFOUT�	O����

�BDDPSEJOH�UP�UFSDJMF�CBTFE�PO�UIF�QFSDFOUBHF�
QSPQPSUJPOT�GPS�FUIOJD�HSPVQT

Genetic Ancestry Low Intermediate High

ASN <0.028 0.028 - 0.055 >0.055

AFR <0.027 0.027 - 0.125 >0.125

AME <0.029 0.029 - 0.058 >0.058

EUR <0.698 0.698 - 0.865 >0.865

Category boundaries were defined according to tercile categorization; ASN, Asian ancestry; AFR, African ancestry; EUR, European  
ancestry; AME, Amerindian ancestry. 


