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Abstract 
Introduction:  Lung cancer in never-smoker (LCINS) patients accounts for 20% of lung cancer cases, and its biology remains poorly understood, 
particularly in genetically admixed populations. We elucidated the molecular profile of driver genes in Brazilian LCINS.
Methods:  The mutational and gene fusion status of 119 lung adenocarcinomas from self-reported never-smoker patients, was assessed using 
targeted sequencing (NGS), nCounter, and immunohistochemistry. A panel of 46 ancestry-informative markers determined patients’ genetic 
ancestry.
Results:  The most frequently mutated gene was EGFR (49.6%), followed by TP53 (39.5%), ALK (12.6%), ERBB2 (7.6%), KRAS (5.9%), PIK3CA 
(1.7%), and less than 1% alterations in RET, NTRK1, MET∆ex14, PDGFRA, and BRAF. Except for TP53 and PIK3CA, all other alterations were 
mutually exclusive. Genetic ancestry analysis revealed a predominance of European (71.1%), and a higher African ancestry was associated with 
TP53 mutations.
Conclusion:  Brazilian LCINS exhibited a similar molecular profile to other populations, except the increased ALK and TP53 alterations. 
Importantly, 73% of these patients have actionable alterations that are suitable for targeted treatments.
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Graphical Abstract 

Implications for Practice
The identification of mutations in lung adenocarcinomas is crucial for deciding the best clinical management for the patients. Here, we 
observed 73% with at least one actionable alteration, with EGFR mutations reaching approximately 50% of patients. Therefore, these 
patients could be benefited by treatments with targeted drugs. A better understanding of the molecular profile in never-smoker patients 
from Brazil may improve the management of patients.

Introduction
Lung cancer in patients who have never smoked (LCINS) 
accounts for 20% of lung cancer cases and remains under-
explored despite its increasing worldwide incidence.1-4 Lung 
cancer in never-smokers shows a better prognosis compared 
to ever-smokers.1-5

Lung cancer biology varies between never-smokers and 
smokers.1,3,6,7 Lung adenocarcinomas in never-smoker patients 
exhibit a higher frequency of EGFR, PIK3CA, and ERBB2 
mutations.1,6 EGFR mutations are notably more common, 
at variance with KRAS mutations, which are associated with 
tobacco exposure.2-4 Moreover, LCINS are more likely to har-
bor actionable variants, including not only EGFR mutations 
but also ALK translocation, impacting patients’ clinical man-
agement.1,3

Patient ethnicity also influences molecular profiles, with 
EGFR mutations more prevalent in Asians and KRAS muta-
tions in Europeans.3,8,9 In admixed populations like Brazil, 
these profiles vary, and are poorly investigated.10 Therefore, 
we aimed to elucidate the molecular features of Brazilian 
LCINS.

Materials and methods
Study population
A series of 119 self-declared, never-smoker patients with lung 
adenocarcinoma (97 primary and 22 following treatment) 
from Barretos Cancer Hospital (BCH, Barretos, SP, Brazil) 
was evaluated. The local IRB approved the study (CAAE 
05744712.3.0000.5437).

Mutation detection
Tumor mutational analysis was performed in FFPE sections 
using the commercial panel TruSight Tumor 15 (Illumina, San 
Diego, CA, USA) on a MiSeq instrument. The read alignment 
and variant calling were performed with Sophia DDM soft-
ware version 4.2 (Sophia Genetics SA, Lausanne, Switzerland). 
Variants were filtered out as previously described, and patho-
genic variants were retained.11,12 Actionable mutations (Tier I 
and II) were determined as reported.1

Fusion detection
ALK fusions were evaluated in 95.0% (n = 113/119) of cases 
by immunohistochemistry using the Ventana ALK (D5F3) 
CDx Assay (Roche, Basel, Switzerland) in an automated 
equipment.11

Detection of mRNA ALK/RET/ROS1/NTRK1,2,3 
fusion transcripts and MET∆ex14 (MET exon 14 skipping) 
was assessed in patients with EGFR and KRAS wild-type 
tumors (n=61) by the nCounter Elements XT (NanoString 
Technologies, Seattle, WA, USA) custom panel for ALK, RET, 
ROS1, and NTRK1/2/3 fusion detection by specific part-
ner and 3ʹ and 5ʹ disbalance, and MET∆ex14, using probes 
designed in-house.13 Twenty-four cases were inconclusive 
due to unavailable biological material. All analyses were per-
formed in R environment v3.4.1.

Genetic ancestry
The genetic ancestry background was evaluated using a set 
of 46 ancestry-informative markers, including INDELs for 
European (EUR), African (AFR), Asian (ASN), and Native 
American (AME).8,12

D
ow

nloaded from
 https://academ

ic.oup.com
/oncolo/advance-article/doi/10.1093/oncolo/oyae129/7701821 by guest on 01 July 2024



3The Oncologist, 2024, Vol. XX, No. XX

Statistical analysis
We described categorical variables using percentages and con-
tinuous variables using the medians. Fisher’s exact test and χ2 
test were conducted for the association between the EGFR 
and TP53 mutations and genetic ancestry in IBM SPSS soft-
ware Version 25 (IBM, Armonk, NY, USA) with a statistical 
significance limit of .05.

Results
Characterization of patients
The clinicopathological features of the 119 LCINS are sum-
marized in Supplementary Table S1. Genetic ancestry was 
determined in 90.0% (n = 107/119) of the cases, following 
the proportion of 71.0% of EUR, 15.9% of AFR, 6.1% of 
ASN, and 7.9% of AME (Supplementary Figure S1).

Molecular profile
Among the 119 lung adenocarcinomas, 83.2% (n = 99/119) 
harbored at least one pathological mutation (Figure 1A). 
Among the 99 mutated cases, 54.5% carried one mutation, 
39.4% 2, 4.1% 3, and 2.0% 4 (Supplementary Table S2). 
EGFR was the most mutated gene (49.6%, n = 59/119), 
followed by TP53 39.5% (n = 47/119), and ALK fusions in 
12.6% (n = 15/119; Figure 1A). The genes ERBB2, KRAS, 
PIK3CA, RET, BRAF, PDGFRA, NTRK1, and MET showed 
fewer genetic alterations (Figure 1A). No alterations were 
observed on AKT1, FOXL2, GNA11, GNAQ, KIT, NRAS, 
ROS1, and NTRK2/3 hotspot regions. Apart from TP53 and 
PIK3CA, all the alterations were mutually exclusive (Figure 
1A). Eighty-seven patients (73.1%) harbor actionable muta-
tions (Supplementary Table S2)

Among EGFR mutations, exon 19 deletions were pres-
ent in 49.2% of cases, followed by exon 21 (28.8%), and 
less frequently in exon 20 (7.6%) and 18 (1.7%; Figure 1B; 
Supplementary Table S2). Three tumors (following treatment) 
harbored the p.(Thr790Met) resistance mutation, and 2 pre-
sented additionally the p.(Cys797Ser) variant. Concerning 
TP53, the most common variant was the p.(Arg337His) 
(12.8%), followed by the p.(Arg273Cys) (6.4%) and the 
p.(Val216Leu) (4.3%; Figure 1C; Supplementary Table S2). 
One patient harbored 2 TP53 variants (Supplementary Table 
S2). TP53 mutations were associated with African ancestry 
(P = .002; Supplementary Table S3).

Exon 20 insertion p.(Tyr772_Ala775dup) accounted for 
66.7% of ERBB2 mutations (Supplementary Table S2). The 
most common variant of the KRAS gene was p.(Gly12Asp) 
(42,8%, n = 3/7), and the variants observed in the PIK3CA, 
BRAF, and PDGFRA genes were at hotspot regions 
(Supplementary Table S2).

ALK fusions were observed in 15 patients (12.6%), both 
by immunohistochemistry and nCounter, the latter allowing 
to identify EML4 as the fusion partner in 73.3% of the cases. 
RET and NTRK1 fusions were identified by 3ʹ-5ʹ disbalance 
in one patient each, (Figure 1A; Supplementary Table S2).

Co-occurring mutations
EGFR and TP53 mutations significantly co-occurred 
in 27.7% (n = 33/119) of cases (P < .0001; Figure 1A; 
Supplementary Table S4). The Brazilian founder TP53 muta-
tion p.(Arg337His) variant was mostly concurrent with 
EGFR mutations (Supplementary Table S2). EGFR variants 

also co-occurred with PIK3CA and ERBB2 mutations. 
TP53 mutations co-occurred with 1/3 of ALK fusions. The 
PIK3CA variants also co-occurred with the KRAS and TP53 
(Figure 1A).

Discussion
The present study interrogated the molecular profile of driver 
genes of LCINS from a single Brazilian institution. Overall, 
we found that 73% of cases harbor actionable molecular 
alterations, in accordance with the literature.1,4,5

EGFR mutations occurred in half of our cases, in agree-
ment with other populations, being higher than European 
and lower than Asian populations (Figure 2; Supplementary 
Table S5).1,2,4,6 Similar to our results, EGFR-TKi sensitizing 
exon 19 deletions are found in 50% of patients diagnosed 
with lung adenocarcinoma, while exon 20 insertions are less 
common globally.1,6,8 TP53 was our second most mutated 
gene (39.5%). This frequency is higher compared to studies 
of LCINS in Asia, Europe, North America, and Latin America 
(Figure 2; Supplementary Table S5).6 We observed an associ-
ation between TP53 mutations and higher African ancestry, 
similar to our recent study on ever- and never-smoker patients 
with lung adenocarcinoma.12 Notably, the most frequent TP53 
mutation was the Brazilian germline variant p.(Arg337His), 
often concurrent with EGFR mutations. Previous lung can-
cer studies reported higher co-occurrence of EGFR and TP53 
mutations, mainly with the Brazilian founder mutation.14-17

We observed 7.6% of ERBB2 mutations in our LCINS, 
consistent with 2%-13% reported in other populations 
(Figure 2; Supplementary Table S5).1-4,6 In our series, only 
5.9% of patients with lung adenocarcinoma had KRAS 
mutations, in accordance with other LCINS studies (4.4%-
18%). Interestingly, ALK fusions in our LCINS series were 
significantly more frequent (12.6%) than reported globally 
(3%-8%).2,4,6 Finally, as previously reported, we identified 
less frequent alterations (1%-2%) in the genes PIK3CA, 
PDGFRA, BRAF, RET, NTRK1, and MET, similar to other 
populations1,6,18 (Figure 2; Supplementary Table S5).

Thus, we observe in the Brazilian LCINS population an 
overall similarity in the frequencies of driver genes reported 
worldwide. The exception was our higher frequency of ALK 
fusions and TP53 mutations, which could potentially be due to 
the significant presence of African ancestry, or founder TP53 
p.(Arg337His) variant in the Brazilian population (Figure 2; 
Supplementary Table S5). Further studies are needed to vali-
date and extend these findings.

Concluding, the molecular profile of Brazilian LCNIS 
resembles that of other populations worldwide, and 73% of 
patients could be eligible for personalized treatments.
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